Unknotting Unknots
نویسندگان
چکیده
A knot is an embedding of a circle into three-dimensional space. We say that a knot is unknotted if there is an ambient isotopy of the embedding to a standard circle. In essence, an unknot is a knot that may be deformed to a standard circle without passing through itself. By representing knots via planar diagrams, we discuss the problem of unknotting a knot diagram when we know that it is unknotted. This problem is surprisingly difficult, since it has been shown that knot diagrams may need to be made more complicated before they may be simplified. We do not yet know, however, how much more complicated they must get. We give an introduction to the work of Dynnikov, who discovered the key use of arc-presentations to solve the problem of finding a way to detect the unknot directly from a diagram of the knot. Using Dynnikov’s work, we show how to obtain a quadratic upper bound for the number of crossings that must be introduced into a sequence of unknotting moves. We also apply Dynnikov’s results to find an upper bound for the number of moves required in an unknotting sequence.
منابع مشابه
Topo IV is the topoisomerase that knots and unknots sister duplexes during DNA replication
DNA topology plays a crucial role in all living cells. In prokaryotes, negative supercoiling is required to initiate replication and either negative or positive supercoiling assists decatenation. The role of DNA knots, however, remains a mystery. Knots are very harmful for cells if not removed efficiently, but DNA molecules become knotted in vivo. If knots are deleterious, why then does DNA bec...
متن کاملA New Class of Stuck Unknots in Pol6
We consider embedding classes of hexagonal unknots with edges of fixed length. Cantarella and Johnston [3] recently showed that there exist “stuck” hexagonal unknots which cannot be reconfigured to convex hexagons for suitable choices of edge lengths. Here we uncover a new class of stuck unknotted hexagons, thereby proving that there exist at least five classes of nontrivial embeddings of the u...
متن کاملKnots with Unknotting Number 1 and Essential Conway Spheres
For a knot K in S, let T(K) be the characteristic toric sub-orbifold of the orbifold (S, K) as defined by Bonahon-Siebenmann. If K has unknotting number one, we show that an unknotting arc for K can always be found which is disjoint from T(K), unless either K is an EM-knot (of Eudave-Muñoz) or (S,K) contains an EM-tangle after cutting along T(K). As a consequence, we describe exactly which larg...
متن کاملUnknotting Sequences for Torus Knots
The unknotting number of a knot is bounded from below by its slice genus. It is a well-known fact that the genera and unknotting numbers of torus knots coincide. In this note we characterize quasipositive knots for which the genus bound is sharp: the slice genus of a quasipositive knot equals its unknotting number, if and only if the given knot appears in an unknotting sequence of a torus knot.
متن کاملSurface Distance on Knots
Let K be the set of all oriented knots up to isotopy. There are several distance functions on K, such as the Gordian distance and the ♯-Gordian distance [9]. In general, given an ‘unknotting operation’, that is, a method to untie every knot, such as the ∆-unknotting operation introduced by S. Matveev [8] (see also [10]), one can define the corresponding distance function as the minimal number o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American Mathematical Monthly
دوره 121 شماره
صفحات -
تاریخ انتشار 2014